"""Script d'entraînement Iris hors-API, utilisable depuis un notebook ou la console. Sauvegarde le modèle dans /work/models/iris_model.pkl. """ from pathlib import Path import joblib from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression MODELS_DIR = Path("/work/models") MODEL_PATH = MODELS_DIR / "iris_model.pkl" def main(): iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) clf = LogisticRegression(max_iter=1000) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) MODELS_DIR.mkdir(parents=True, exist_ok=True) joblib.dump(clf, MODEL_PATH) print({"status": "trained", "accuracy": float(acc), "model_path": str(MODEL_PATH)}) if __name__ == "__main__": main()